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Problem Statement and Motivation

The Problem

We want to solve:

minimize f(x)
xeR"”

when V£(x) is unavailable and we only have access to noise-corrupted
function evaluations f(x).
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Problem Statement and Motivation

The Problem

We want to solve:

minimize f(x)
xeR"”

when V£(x) is unavailable and we only have access to noise-corrupted
function evaluations f(x).

Such noise may be deterministic (e.g., from iterative methods) or stochastic
(e.g., from a Monte-Carlo process).

Model-based methods are one of the most popular methods when V£ is
unavailable, and the only recourse when noise is deterministic.
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Problem Statement and Motivation

The Problem

We analyze the convergence of our method in the stochastic case:
f(x) = f(x) +e

where ¢ is identically distributed with mean 0 and variance 02 < co.
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Problem Statement and Motivation

The Problem

We analyze the convergence of our method in the stochastic case:
f(x) = f(x) +e

where ¢ is identically distributed with mean 0 and variance 02 < co.

This is equivalent to solving:

minimize E [f(x)] .

X
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Problem Statement and Motivation

Example
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Common Approaches

Stochastic Approximation

Iterates usually have the form:
X1 = Xk + akG(xx),
where

e G(xx) is a cheap, unbiased estimate for Vf(xx)
e a, is a sequence of step sizes
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Common Approaches

Stochastic Approximation

Iterates usually have the form:
X1 = Xk + akG(xx),
where

e G(xk) is a cheap, unbiased estimate for V£ (x)

® 3, is a sequence of step sizes (specified by the user) satisfying:

o)

E a = 00 lim ax =0
k— o0

k=1
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Common Approaches

Stochastic Approximation

[terates usually have the form:
X1 = Xk + akG(xx),
where

e G(xk) is a cheap, unbiased estimate for V£ (x)

® 3, is a sequence of step sizes (specified by the user) satisfying:

o)

E a = 00 lim ax =0
k— o0

k=1

Algorithm performance depends significantly on sequence ay.
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Common Approaches

Response Surface Methodology

e Developed by the experimental design community.

e Build models using a fixed pattern of points, for example, cubic,
spherical, or orthogonal designs among many others.

e Finding the design that constructs response surfaces approximating the
function without requiring excessive function evaluations can be difficult
for problems where the user has no prior expertise.
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Common Approaches

Modifications to Existing Methods

Take a favorite method and repeatedly evaluate the function at points of
interest.

Stochastic approximation modified by Dupuis, Simha (1991)
e Response surface methods modified by Chang et al. (2012)
UOBYQA modified by Deng, Ferris (2006)

Nelder-Mead modified by Tomick et al. (1995)

DIRECT modified by Deng, Ferris (2007)
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Common Approaches

Modifications to Existing Methods

Take a favorite method and repeatedly evaluate the function at points of
interest.

e Stochastic approximation modified by Dupuis, Simha (1991)
e Response surface methods modified by Chang et al. (2012)
UOBYQA modified by Deng, Ferris (2006)

Nelder-Mead modified by Tomick et al. (1995)

DIRECT modified by Deng, Ferris (2007)

There are two downsides to such an approach:
1. Repeated sampling only provides information about the noise ¢, not f.

2. If the noise is deterministic, no information is gained.
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Our Method

Overview

We therefore desire a method that
1. Adjusts the step size as it progresses
2. Does not use a fixed design of points

3. Does not repeatedly sample points
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Our Method

Overview

We therefore desire a method that
1. Adjusts the step size as it progresses
2. Does not use a fixed design of points

3. Does not repeatedly sample points

We aim to extend the convergence results of Conn, Scheinberg, and Vicente
for trust-region methods to the stochastic case.

Similarly, we'd like the class of possible models to be general.
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Our Method

k~fully Linear

Definition
If f € LC and 3 a vector k = (kef, keg) Of positive constants such that

e the error between the gradient of the model and the gradient of the
function satisfies

IVF(y) = Vm(y)|| < reg ¥y € B(x; A),
e the error between the model and the function satisfies
If(y) — m(y)| < ker A% Yy € B(x; A),

we say the model is k-fully linear on B(x; A).
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Our Method

a-probabilistically x-fully Linear

Definition

Let k = (Kef, keg) be a given vector of constants, and let o € (0,1). Let
B C R" be given. A random model my generated at the kth iteration of an
algorithm is a-probabilistically x-fully linear on B if

P (mk is a k-fully linear model of f on B’]-'k_l) > «,

where F,_1 denotes the realizations of all the random events for the first
k — 1 iterations.
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Our Method

Regression Models can be a-probabilistically x-fully Linear

Theorem
For a given x e R", A >0, a € (0,1),

e Y C B(x; A) is strongly A-poised,
e The noise present in f is i.i.d. with mean 0, variance o2 < oo,

Y] > C/A%,
Then there exist constants k = (Kef, keg) (independent of A and Y') such
that the linear model m regressing Y is a-probabilistically k-fully linear on

B(x; A).
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Our Method

One Last Part

For our analysis, we need estimates of f(x) and f(x* + s¥) that are slightly
different than those provided by the model functions.

Let FY and F§ denote the sequence of estimates of f(x¥) and f(x* + s).

We need to be able to construct estimates satisfying
P[|F? = f(x¥)| > emin {Ay, AL} | Fruoa] <6
and P [|st — F(x* + 5%)| > emin {Ay, A2} ‘IH} <0,

for any € > 0 and 6 > 0.
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Algorithm 1: A trust-region algorithm to minimize a stochastic function

Pick 0 < Ydee <1 < Vine, 0 <, f<1,0< Ap, and a € (0,1). Set k = 0;
Start
Build a a-probabilistically x-fully linear model my on B(x*; Ay) for some
Qg 2
Compute sk =arg  min  my(s);
st||xk—s|| <Ak
if me(s*) — mx(x* + s*) > BAk then
FO— Fs

Calculat = :
alcuiate Pk mi(xk) — my(xk + sk)

if px > n then

‘ Calculate x**1 = xk 4 s%; Ay 1 = YincAk;
else

| x
end
else

| x
end
k =k +1 and go to Start;

k41 _ k. _ )
= x5 Akg1 = Ydec Dk;

k1 _ k. _ )
= XK A1 = YdecDAk;




Outline of Convergence Proof

Convergence

If the function f, noise €, and various algorithmic constants satisfy some
assumptions, we prove that our algorithm converges almost surely to a
first-order stationary point of f.
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Outline of Convergence Proof

Convergence

Assumption

The additive noise € observed when computing f is independent and
identically distributed with mean zero and bounded variance o

Assumption

On some set 2 C R" containing all iterates visited by the algorithm,
e f js Lipschitz continuous
e Vf is Lipschitz continuous

e f has bounded level sets
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Outline of Convergence Proof

Convergence

Assumption

The constants a € (0,1), Yaec € (0,1), and ~jnc > 1 satisfy

1 Yinc—1
> _ Yinc
a > maxg —,1
2 4 [ Zinc_l _|_ 1— Ydec
2%inc Ydec

where
e « is the lower bound on the probability of having a k-fully linear model,
® Yaec € (0,1) is the factor by which we decrease the trust region radius,

® vinc > 1 is the factor by which the trust radius is increased.
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Outline of Convergence Proof

Convergence

Assumption
The constants o € (0,1), vgec € (0,1), and ~yinc > 1 satisfy

Yinc—=1

1 —
a > max —,1 — il
2 4 Yine—1 1—"dec
2%inc Ydec

where

e « is the lower bound on the probability of having a k-fully linear model,
® Yiec € (0,1) is the factor by which we decrease the trust region radius,
® vinc > 1 is the factor by which the trust radius is increased.

If Yinc =2 and Ygee = 0.5 = a > 0.9.
If Yinc =2 and Ygee = 0.9 = «a > 0.65.
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Outline of Convergence Proof

Proof Outline

Theorem

If the above assumptions are satisfied, our algorithm converges almost surely
to a first-order stationary point of f.

e Show the sequence of trust region radii Ay — 0 almost surely.
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e Show if Ay ever falls below some constant multiple of the model
gradient, Axi1 > Ay with high probability.
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Outline of Convergence Proof

Proof Outline

Theorem

If the above assumptions are satisfied, our algorithm converges almost surely
to a first-order stationary point of f.

e Show the sequence of trust region radii Ay — 0 almost surely.

e Show if Ay ever falls below some constant multiple of the model
gradient, Axi1 > Ay with high probability.

e Lastly, show that, the sequence of ratios

{ IIVfA(fk)II }

is bounded above by a nonnegative supermartingale. Since every
nonnegative supermartingale converges almost surely, and A, — 0
almost surely, this implies | Vf(xk)|| — 0 almost surely.
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Numerical Results

Problem Set

53 problems of the form:
m

fx) =D 11+ o),

i=1

where o ~ U[-0.1,0.1].
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Numerical Results

Problem Set

53 problems of the form:

m

fx) =D 11+ o),

i=1

where o ~ U[-0.1,0.1].

If S is the set of solvers to be compared on a suite of problems P, let t, s be
the number of iterates required for solver s € S on a problem p € P to find
a function value satisfying:

f(x)—fL <7(f(x0) — f),

where f; is the best function value achieved by any s € S.
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Numerical Results

Performance Profile

Then the performance profile of a solver s € S is the following fraction:

o) (o s <o)

min{t,s:s€ S} ~
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Numerical Results

Performance Profile

Then the performance profile of a solver s € S is the following fraction:

ps(a) = G '{ P m,n{tpt:.sse Sy a}‘

e Note that we are using the true function value f, not the observed f.

e Since the noise is stochastic, each solver is run 10 times per problem.
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Numerical Results

Performance Profile
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Numerical Results

Performance Profile
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Numerical Results

Performance Profile
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Numerical Results

Current Work

e Generalizing results to ensure a practical algorithm converges.

o For example, not requiring a-probabilistically x-fully linear models every
iteration.
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Numerical Results

Current Work

e Generalizing results to ensure a practical algorithm converges.

o For example, not requiring a-probabilistically x-fully linear models every
iteration.

e Smartly constructing a-probabilistically x-fully linear models.
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